Tuesday, 14 August 2007

Coaxial cable


Coaxial cable or is an electrical cable consisting of a round conducting wire, surrounded by an insulating spacer, surrounded by a cylindrical conducting sheath, usually surrounded by a final insulating layer (jacket). It is used as a high-frequency transmission line to carry a high-frequencybroadband signal. Because the electromagnetic field carrying the signal exists (ideally) only in the space between the inner and outer conductors, it cannot interfere with or suffer interference from external electromagnetic fields.

Description

Coaxial cables may be rigid or flexible. Rigid types have a solid sheath, while flexible types have a braided sheath, usually of thin copper wire. The inner insulator, also called the dielectric, has a significant effect on the cable's properties, such as its characteristic impedance and its attenuation. The dielectric may be solid or perforated with air spaces. Connections to the ends of coaxial cables are usually made with RF connectors.

Signal propagation

Radio-grade flexible coaxial cable. A: outer plastic sheath B: copper screen C: inner dielectric insulator D: copper core




Open wire transmission lines have the property that the electromagnetic wavecharacteristic impedance. They also cannot be run along or attached to anything conductive, as the extended fields will induce currents in the nearby conductors causing unwanted radiation and detuning of the line. Coaxial lines solve this problem by confining the electromagnetic wave to the area inside the cable, between the center conductor and the shield. The transmission of energy in the line occurs totally through the dielectric inside the cable between the conductors. Coaxial lines can therefore be bent and moderately twisted without negative effects, and they can be strapped to conductive supports without inducing unwanted currents in them. In radio-frequency applications up to a few gigahertz, the wave propagates only in the transverse electric magnetic (TEM) mode, which means that the electric and magnetic fields are both perpendicular to the direction of propagation. However, above a certain cutoff frequency, transverse electric (TE) and/or transverse magnetic (TM) modes can also propagate, as they do in a waveguide. It is usually undesirable to transmit signals above the cutoff frequency, since it may cause multiple modes with different phase velocities to propagate, interfering with each other. The outer diameter is roughly inversely proportional to the cutoff frequency. propagating down the line extends into the space surrounding the parallel wires. These lines have low loss, but also have undesirable characteristics. They cannot be bent, twisted or otherwise shaped without changing their

The outer conductor can also be made of (in order of decreasing leakage and in this case degree of balance): double shield, wound foil, woven tape, braid. The ohmic losses in the conductor increase in this order: Ideal conductor (no loss), superconductor, silver, copper. It is further increased by rough surface (in the order of the skin depth, lateral: current hot spots, longitudinal: long current path) for example due to woven braid, multistranded conductors or a corrugated tube as a conductor) and impurities especially oxygen in the metal (due to a lack of a protective coating). Litz wire is used between 1 kHz and 1 MHz to reduce ohmic losses. Coaxial cables require an internal structure of an insulating (dielectric) material to maintain the spacing between the center conductor and shield. The dielectric losses increase in this order: Ideal dielectric (no loss), vacuum, air, PTFE-foam, PTFE, polyethylene. It is further increased by impurities like water. In typical applications the loss in polyethylene is comparable to the ohmic loss at 1 GHz and the loss in PTFE is comparable to ohmic losses at 10 GHz. A low dielectric constant allows for a greater center conductor: less ohmic losses. An inhomogeneous dielectric needs to be compensated by a noncircular conductor to avoid current hot-spots.

CONNECTOR













From the signal point of view, a connector can be viewed as a short, rigid cable. The connector usually has the same impedance as the related cable and probably has a similar cutoff frequency although its dielectric may be different. High-quality connectors are usually gold or rhodium plated, with lower-quality connectors using nickel or tin plating. Silver is occasionally used in some high-end connectors due to its excellent conductivity, but it usually requires extra plating of another metal since silver readily oxidizes in the presence of air.

One increasing development has been the wider adoption of micro-miniature coaxial cable in the consumer electronics sector in recent years. Wire and cable companies such as Tyco, SumitomoHitachi Cable, Fujikura and LS Cable all manufacture these cables, which can be used in mobile phones. Electric,


No comments: